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ABSTRACT

A new approximation technique to a certain class of nonlinear filtering

problems is consideredit*-t*+s-repvrt The method is based on an approxima-

tion of nonlinear, partially observable systems by a stochastic control

problem with fully observable state. The filter development proceeds from the

assumption that the unobservables are conditionally Gaussian with respect to

the observations initially. The concepts of both conditionally Gaussian

processes and an optimal-control approach to filtering are utilized in the

filter development. A two-step, nonlinear, recursive estimation procedure

(TNF), compatible with the logical structure of the optimal mean-square esti-

mator, generates a finite-dimensional, nonlinear filter with improved charac-

teristics over most of the traditional methods. Moreover, a "close" (in the

mean-square sense) approximation for the original system will be generated as

well. In general the nonlinear filtering problem does not have a finite-

dimensional recursive synthesis. Thus, the proposed technique may expand the

range of practical problems that can be handled by nonlinear filtering. A

detailed derivation for the filter with global property is presented. xten-

sion of the results to large-scale nonlinear systems is accomplished b incor-

porating a novel decomposition scheme in the filter design.

Application of the developed filter to a sca onlinear system which

lacks model "smoothness" is presented in [K2J. Application of the derived

multi-dimensional filtering algorithm to two low-order, nonlinear tracking

problem according to a global criterion and a local-time criterion respec-

tively are presented. Also, a comparison with traditional methods, such as

the popular Extended-' r mn Filter (EKF), are given via digital-computer

simulation to demonstrat the effectiveness of the obtained results.
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NOTATIONS

The following notations will be used throughout this dissertation:

Rn, Euclidean n - dimensional space

CT , Space of continuous functions on [0,T]

T , Time Interval, usually (--,-)

a Sample space

F , Field

Ct ' Sub a-algebra rt;F

P , Probability measure

(a, F, P) , Complete probability space

tr (.) Trace operator

E (.) , Expectation operator

E(x/ )-it , Conditional expectation, E(x(t)/y ; s~t)

rt  Conditional-error covariance,

EC(x)-i((x(Wl-ift) * /Ys s~t)

xt[ I , An element of the subset [ ]

* ,Transposition operator

II II , Euclidean norm

Uhs M in (s,t)

[ J , Refer to references

(i-J) Refer to equation or set of equations where i
denotes the chapter, and J is the serial
(sequential) number of that equation

V s, First-order derivative with respect to t (time)_t"

-V Aar



3t ' ,h First-order derivative (Gradient vector)

32 V y ijth,Second-order derivative (Jacobian matrix)
T Mi z ZZ'

x , Random variable

xt ,Stochastic random process

(xt) Sequence of random processes, i-1,2,...n

Yt o-algebra generated by the observation
processes (ys; s4t)

* , Differentiable Gaussian measure, N(R, r )

V Set of nonanticipative admissible controls

{ WJ , Wiener-process sequence

(m.s.e.) Mean square error

RMS , Root mean square

(P.a.s.) Almost surely with probability one

*1
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1. INTROIJUCTIOI

The behavior of natural phenomena in general does not follow

strict linear deterministic laws. Modern technology, with its great

refinement of instrumentation, has made it abundantly evident the

the formulations of natural laws in which troublesome nonlinear ter

are suppressed or neglected to achieve workable linearizations, oft#

lead to faulty results or to sacrifices of precision, which are

longer tolerable. Consequently, the simple mathematical determin-

istic model nust be modified. This can be achieved by using a sto-

chastic nonlinear model representation where the dynamic behavior of

a physical system is formulated in terms of the evolution of the

state (xt) of the system, under the influence of random disturbance

(Ct), as a solution of a set of stochastic differential equations:

i-f(t,xt, Et),teT,(1)

where f (.) is a nonlinear, real n-vector function;
xt -a stochastic process n-vector which usually cannot be

masured directly,

t - the tim variable, ttEO, T],

Ct  -a vector stochastic process to model the random
di sturbance.

To avoid confusion, the following notation will be adapted in

the sequel. By writing xt, one interprets x as a stochastic process,

i
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while x(t) will mean that x is a deterministic function of time.

Moreover, (x(t)), (xt) will mean deterministic and stochastic

sequences respectively.

An important soecial class of (1-1) is the stochastic differen-

tial equation with the random disturbance modeled as an additive

white Gaussian noise Ot, which has well-known characteristics.

Hence, a white-noise model is used here with

dx _ f(x t t) + G(xt, .t)O t  (1-2)

It is important to note here that this model may lead to mathematical

difficulties In the case of classical integrals. However, we may

replace the white-noise model, (1-2), by an equivalent 'Wiener-

process" model as follows:

dxt . f(xtt)dt + G(xt,t)dw , (1-3)

which is interpreted in the Ito sense [Li]. More detailed discussion

of the above equivalent formulations is given in Appendix A.

In most practical problems, the states of the system, which

model its dynamical behavior, connot be observed directly; only noisy

versions can be measured. This noise is due to the unavoidable meas-

urement error, and in most cases is modeled for convenience either as

an additive Gaussian process or as an additive Wiener process. Con-
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sequently, a filtering algorithm may be employed to extract and esti-

mate reliably the states of the system from the measured values.

Stated another way, a given system has its dynamics modeled by the

following version of (1-1):

= f t' t , (1-4)

where f(.), t, xt , Ct are as defined before. Here Yt, the observable

states, (can be measured directly) evolve according to the following

nonlinear differential equations:

=Hit, xt , Yt' vt)"(1O

Again, H(.) is a nonlinear, real n-vector function, and vt is a

vector stochastic process modeling the observation noises, which may

be caused mainly by measurement noises and environmental effects.

Assume that (1-4), (1-5) can be solved for each realization of

C,v. Then, realization of x,y which are also of a stochastic nature,

are defined. Furthermore, to completely define the filtering prob-

lem, a performance criterion must be stated, which defines in what

sense the estimate should follow the state. In this research, the

mean-square criterion is adapted because of both its mathematical

convenience, and the distance measure it provides the estimate to

follow "closely" the original state. Hence,
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T

J(i t xt) E J (flxt - xtl 2)dt (1-6)
0

Here, E(.), I1.I11, Rt are the expectation, the Euclidean norm, and

the Obest! estimate of xt respectively. This particular criterion

was chosen to ensure a "global" filtering criterion. However, other

criteria might be used depending on the application of interest.

The filter equation can be modeled as:

it K (y(s); st[O,t]) , (1-7)

where i t , the estimate, is defined once the structure of the K

operator is obtained. Thus, if we assume that E(jIxt 112) <_,

tl[O,T], then it is well known (D2] that it ' the best estimate, is

generated by the following formul a:

I - E(xt/ys; sc[Ot) , (1-8)

where E() denotes the conditional expectation. Moreover, with addi-

tional assumptions about the structure of (1-4), and (1-5), a recur-

sive version of (1-8), (closed form) can be found (i.e. the estimated

value of It+At at time (t+at) can be generated by a recursive formula

if given the value of the estimate it at time t and the observations

(ys; sa(t, t+A))). This is imediately recognized within the class

of linear systems with linear observations and additive Giussian
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noises, as the optimal (in m.s.e), state estimator and consists of a

finite dimensiors linear filter. The latter is due to the Gaussian

assumption in the system which permits the conditional probability

density function to be completely characterized by only the condi-

tional mean and the conditional covariance [D2]. However, for non-

linear systems this fortunate situation does not generally exist.

Obviously, nonlinear filtering techniques are more general and

greatly expand the range of practical problems which can be

handled. But, its optimal estimator generally consists of an

infinite-dimensional system of moments, or equivalently a partial

differential equation that has an infinite number of dimensions.

Consequently, approximation and ad-hoc techniques usually are

employed to construct practical filters for nonlinear systems. The

classical methods described in recent literature for realizable

nonlinear filters can be roughly classified into two categories.

They are either probabilistic or statistical approaches. In the

statistical approaches, the basic idea is to linearize the nonlinear

equation; then the Kalman-Bucy method is applied. The linearization,

which is a first order power-series expansion of the nonlinear terms,

is generally performed either with respect to a given "reference

trajectory" or with respect to an estimator that is obtained by

filtering, such as the case in the Extended Kalman Filer EKF. But,

these approaches have some drawbacks. For instance, in the first

case the true trajectory should be close to the assumed one which is
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sometimes hard to fulfill. In the second case, since the filter

parameters are functions of the state estimate, an error in the

estimate impacts filter gain and can result in filter bias,

inconsistency, and even divergence. In the probability approach,

which was started by Stratonavich [S1 and developed by Kushner [K4],

Bucy [B1, Jazwinski [J1],--to mention a few, the general procedures

are as follows: First, the equation of evolution for the conditional

probability density functions are determined. Then, equations of the

conditional moments are developed. Finally, various heuristic

assumptions and arbitrary truncation schemes are applied to the

evolving infinite dimensional filter equations to generate finite

versions.

The basic comon assumption that is used in the filtering

algorithms mentioned above, is the requirement of the *differentia-

bility" or "smoothness" of the nonlinear terms. This results in

replacing the global properties of the filter by local properties,

and *derivatives' which are further aggravated by noise. This

assumption restricts the range of direct application (unless they are

heuristically modified) of the above algorithms.

It is well known that linear filtering is of paramount impor-

tance to sonar (active and passive) and radar applications.

Estimation in sonar is often associated with the localization of a

target which has already been detected. Localization is essentially

a parameter estimation problem where the parameters of interest
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typically are target range, Doppler (radial velocity) and azimuth

angle. The sonar "measures" one or more of these quantities as a

function of time using the observed sensor data to obtain a history

of the target track for surveillance or fire control. In general,

the measured quantities are nonlinear functions of the localization

parameters so that nonlinear estimation techniques must be used to

establish the target track. Various manual - deterministic and

automated - sequential methods such as the EKF are currently in

use. There are obvious shortcomings of the EKF for passive tracking,

such as the "ill conditioning" of the error covariance matrix due to

false observability which causes the filter divergence. Detailed

studies of the EKF shortcomings are given in EA2], and [C11.

Consequently, -the development of a "global or "local timeu nonlinear

filter that does not suffer from the above shortcomings would be

quite attractive, specifically to sonar applications. The proposed

nonlinear filters developed herein do have the above features.

Hence, applicability to sonar applications must be fully explored.

This dissertation introduces new finite-dimensional filtering

structures for a certain class of nonlinear systems which offers:

1. Better filtering accuracy than the traditional techniques.

2. Does not require the Osmoothness" assuptton of the existing

techniques.

3. A global filtering criterion.

F

r
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It is the general goal of this work to devise a means of coping

with mary of the drawbacks of the exisiting techniques. The object

of this thesis is the design of a new nonlinear filtering approx-

imation. The filter structure is recursive, easily implementable,

efficient, and finite dimensional. The concept of both conditionally

Gaussian processes and an optimal control approach to filtering are

used in the filter derivation. The method of solution is based on a

result of Liptser and Schiryayev [L2] which was rigorously extended

to the vector case by KolodzieJ [K1]. This approach combines the

advantages of a sound theoretical basis, generation of an

approximation model for the original nonlinear system, and generation

of. a finite-dimensional nonlinear filter which has certain improved

characteristics over most classical methods, such as the popular EKF.

The suggested technique, which could be called "an approximation

in the parameter space,8 consists of three basic concepts:

approximate feedback control modeling, conditionally Gaussian

filtering, and control law computation. The use of the

conditionally-Gaussian concept, which was formally introduced by

Lipster and Shiryayev [L2] allows a closed systm of equations for

calculating recursively it - E(xt/yt) and rt- Coy (xt/yt ) which

completely characterize the conditional Gaussian-distribution

function P(xta/yt), t)O. That provides a certain class of

stochastic nonlinear system with the same tools as the Gaussian

assumption provides for linear systems.

MOM
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The main advantage of this approach over the traditional

techniques are: First, the basic and most common assumption of the

"differentiabilltyu or smoothness" of the nonlinear terms is not

required here. This is important for filter stability and

susceptability to noise aggravation; second, the model itself is

approximated rather than approximating the evolving filter equations,

as is the case in most of the existing filter methods. Consequently,

one has more flexibility in adjusting the approximating parameters

and end up with a good (in m.s.e. sense) approximation model, as well

as an approximated finite-dimensional nonlinear filter. That is not

the case when the filter equations are approximated directly, due to

the strict requirements of the filter theory. Finally, in most

linearization techniques the available observations are used only

through the innovation process in the filtering algorithm so valuable

information may be wasted. Herein, more complete use of the

available observations are undertaken through the concept of

conditioning the process on the given information as well as

channeling it back through the innovations process.

The dissertation organization is as follows: chapter one is

mainly tutorial in the sense that it reviews briefly the significant

techniques that are used in nonlinear filtering theory. It also

includes the definition of the goals, the scope of this research, and

an outline of the organization of the dissertation. In chapter two,

a formal definition of the nonlinear filtering problem is given, and
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the structure of an optimal finite-dimensional nonlinear filtering

approximation is developed. In chapter three, a major feature, a

*decomqositen scheme," t is Incorporated in design strategy of

filtering a certain class of large-scale nonlinear systems. Chapter

four presents application examles to illustrate the proposed

filtering algorithm via digital computer simulations. A comparison

with traditional techniques such as the EKF and the Modified

Truncation Second-Order Filter MSOF (when it is applicable) are also

given. This comparison is based on performance, accuracy and cost of

computation and storage requirements. Finally, Chapter five presents

concluding remarks, and comments on future areas of research.

Appendix A presents a brief discussion of the equivalence

between the Wiener-process formulation and the whi te-noi se

formulation in modeling stochastic differential equations. Appendix

B is intended to be an easy reference to two Lis used in this

text. I

Imp-
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2. AN APPROXINATE FINITE-IMENSIONAL
NONLINEAR FILTER

In this chapter the nonlinear filtering problem is defined, and

the derivation of a bilinear feedback-control-model approximation

with its corresponding finite-dimensional filter is presented. In

general, the suggested technique uses extensively three basic

concepts, bilinear feedback modeling, control-law comutation, and

conditionally-Gaussian filtering. Hence, these three significant

concepts are formally introduced. The new filter, in general,

consists of two major steps. In the first step, the given system is

approximated by a bilinear, feedback-control model. In the second

step, the state estimator (m.s.e.) is comuted using the

conditionally-Gaussian-filter format. Thereafter, it will be

referred to as the two-step nonlinear filter (TNF).

2-1 A Nonlinear Filtering Problem

Consider as given some comlete probability space (a, F, P) with

a nondecreasing, family of sub-o-algebra CtF, te(O,T]. Let (wti),

i - 1,2, .....,n be mutually independent Wiener processes comrising a

vector of dimension n. Also, given a nonlinear model with dynamics

described by a family of stochastic differential equations (in

the Ito sense) of the form

f(t,z) dt + a(tz)dwt . (2-1)
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Here, te (O,T), z c C the space of continuous functions < Rn, and

f : [O,T] x Rn + Rn nonlinear, real n-vector functions,

a : [O,T x Rn. Rn x Rn matrix.

The nonlinear functions involved in equation (2-1) are assumed to

have appropriate properties to guarantee the existence, uniqueness,

and continuity of samle solution with probability one (Li). These

sample solution properties are crucial for modeling a physical

practical system by (2-1) and essential for simlating the

corresponding model by digital computer.

Suppose now that z c Rn is written in terms of two components

z-(x,y), where y c Ra, x e Rn- m. Correspondingly, f, o can be

written as

f a (F,H), a G
R

where F,H are (n-r). m dimensional vectors respectively. G,R are of

dimensions (n-m) x n, m x n respectively. The vector y represents

the noisy partial observations that are made of the whole process.

Thus, the observation a-field is the sub a-field of zt defined by Yt

a-algebra (y.; O5s4t). Notice that if n - n the system in (2-1) is

__ _ __ _ __ _ __ _ __ _ __ _ __ _ _
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completely observable. Hence, the system in (2-1) can be decomposed

as follows:

dx t a F (z,t) dt + G (z,t) dt, (2-2-a)

(2-2)

dyt - H (z,t) dt + R (z,t) dwt .  (2-2-b)

Here again (2-2-a), (2-2-b) are interpreted in the Ito sense (Li).

The system in (2-2) is nonlinear, then the optimal estimate for

a minimal-variance criterion, (i.e. mean-square-error sense), is

known to be the conditional expectation of the state of the system

given the observation, {ys; Os lt, tl[O,T].

it - E (xt/ys; sc (O,t)) , (2-3)

where E(/) denotes the conditional expectation. In principle a

sequential version of (2-3) can be found, (i.e. the estimateIt+,t at time (t + At) can be generated recursively if given the

value of the estimate i t at time t and the observations (ys ;

sc[t,t+AtJ). But, in general, the recursive formulae consist of an

infinite-dimensional system of moment equations which are needed to

completely characterize the conditional probability density p(xt,

t/y s ; sc[0,t]). Thus, an approximation must be made for practical

implementation. A nw approximation method will be developed in the

following sections.

_ _ _
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2-2 A Bilinear Feedback Approximation Model

A bilinear control model which approximates the nonlinear system

in (2-2) is presented here. This technique is called "an

approximation in the model parameter space." Its parameters are

functions of the feedback control law ut which is itself a functional

of the observation processes yt"

In general, the model can be approximated as follows:

dxt - F(xtutt) dt + G (xt, utt) Ckt ,

(2-4)

dyt i H (xtut,t)dt + R (xt,ut,t)dwt

where (F(.), G(.), R), (.)) are functionals of Ut. The control ut

is measurable with respect to Yt-a-algebra (ys; ONskt), the

stochastic process defined on tc[O,T], and it is chosen to minimize

the following "mean-square global" criterion:

T
Q(u) - E(f IFt - Ftil dt) , (2-5)

0

where Ft denotes any of the functions F, H, R, or G in (2-2), and

Ft is its corresponding approximation in (2-4). Here, the norm

11.11 is a Euclidean norm, and the arguments (xt, yt,t), (xt,utt)
I

i
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are omitted for brevity. It should be noted that the choice of this

performance index (2-5) ensures a form of global filtering even

though, the search for the approximation Ft falls into a class of

stochastic-control problems and depends strongly on the type of

nonlinearities in the system. However, in (K3] it was emphasized

that using a "local" filtering criterion will eliminate the

dependence of the approximating parameters on the particular form of

nonlinearities in the system. Thus, it is a trade off between

filtering properties and the complexity of the search for the

approximation parameters.

An important special class of (2-4) is the following bilinear

form:

dxt = CA(ut,t)xt + B(ut,t)fdt + (utt)dwt,

(2-6)

dyt a EC(uttt)xt + D(ut,t)ldt + R (ut,t)dwt,

where (A,8,C,O,G,,)are of appropriate dimensions, and are linear

functionals of ut. The term bilinear refers to the fact that the

system is linear in the control and state, but not jointly linear

CM2]. Mow assume G which minimizes (2-5) is available; then (2-6)

is a "close" approximation model to the original system in (2-2), and

the minimization criterion is a measure of the quality of the

approximation.
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Remrks

() Although the bilinear structure in (2-6) requires the identifi-

cation of more parameters than the ones in the original system

in (2-2), it is mathematically more convenient for the

derivation of the filter.

(ii) A unique, explicit, general form for (A, B, C, D, G, and R

cannot be given, because they depend strongly on the type of

nonlinearities in the original system.

(iii) The model may include a broad class of non-Gaussian noise

source, since non-Gaussian or even nonstationary processes may

be modeled by Wiener noise passed through an appropriate

nonlinear filter of this class.

(iv) The use of the feedback control in the approximation will

couple the filter equations (i.e. the covariance equations will

be functions of the estimates). But unlike the other

linearization techniques this may enhance the stability of the

filter due to the feedback structure.

i
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2-3 Conditionally Gaussian Processes

An important concept which is used extensively in this research

is the conditional Gaussian concept. Lipster and Shilyayev [L23

formally define it as follows:

Theorem 2-1:

Let (with probability one p.a.s) the conditional distribution

P(xo.aO/yo), a0oR be Gaussian, N(mo,r O) with Oro<-. Then the

random process (xt,yt), Ot4T, satisfying a diffusion type of

equations as in (2-6) where the parameters satisfying conditions (11-

4)-(11-11) of [L21, is conditionally Gaussion such as: for any t>O,

OtO<t1 .... tn~t, the conditional distributions

Fyo(Xo,..,Xn) - P( 0to 0 ,•...,xtn£n/t)

are (p.a.s) Gaussian.

The proof of this theorem is very long and is given in (12).

This result is very important since it allows a closed system of

equations for generating recursively xt" E(xt/Yt)' and

rts Coy (xt/yt ) . (This is obtained by replacing the complex

computation of the conditional expectation in (2-3) by a simple

integration.) And these two parameters completely characterize the

conditional distribution P(xt;a/yt ), t0. So, it provides a class of

stochastic nonlinear systems with the same tools that the Gaussian

assumption provides for linear systems.

- I I



19

Subsequently, for this class of nonlinear systems, the concept led to

the development of a finite conditionally-Gaussian filter by Lipster

and Shiryayev EL2]. It also, offers more flexibility in control

applications than do linearization techniques. This advantage has

been demonstrated by Kolodziej (K1 and Mohler and Kolodziej [13.

It should be emphasized here that in application the necessary

assumption of x0 given yo to be conditionally Gaussian can be

satisfied under realistic operating conditions. This may result from

a physical consideration or from a direct approximation of the

distribution of x0 given yo by a Gaussian process. In the first

case, for example, the error of the estimate of x0 given yo might be

caused by many random phenomena which in turn might be approximated

by a Gaussian process. Nevertheless, this does not necessarily mean

that either x0 or y0 has to be Gaussian.

2-4 A Conditionally Gaussian Filter

This finite-dimensional filter is derived by Lipster and

Shiryayev £L2) and is rigorously extended to the multi-dimensional

case by KolodzieJ (K1] who also, relaxed some of the required

conditions suggested earlier in £L2].

To summarize their results, consider the system in (2-6) which

is partially observable. At any time t it is desired to estimate the

unobservable state xt using realizations of the observation state

yt" Let (xo,y 0 ) be the initial states for (2-6) which are assumed to
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be independent of the Wiener processes wpi-l,2. The parameters

(AC.), B(.), C(.), D(.), G(.), R(.) ) are of the appropriate

dimensions and their elements are assumed to be measurable non-

anticipative functionals on [0,T]xCT n. Also, assume that ut is a

measurable functional of Yt where Yt is the a-algebra generated by

Cys; Nst]. Then, sufficient conditions for derivation of a

recursive optimal, mean-square estimate of xt given (ys; 0s4t) are

given below. For all u E CTn,

f T A(t,u)I 2 dt -, and (2-7)
0

fTEIIB(t)114+lIC(t,u)11 4 + ItD(t,u)11 2 + G(t,u)II 4 dt,< . (2-8)
0

For u,neCtn, te[O,T] define

R2(tu) - R(t,u) R*(t,u)

then IIR'2(t,u)II l c < (2-9)

Also, assume that

IIR(t,u) - R(t,n)II 2 c C f flu(s) - n(s)I2 dk(s)
0

+ I lu(t) - n(t) 112)

-r -
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and (2-10)

T

IIR(t,u)11 2 ,, c ( f (1 + Ilu(s)ll 2 dK(s) + 1 + IIu(t)II 2),

where K(s) is a nondecreasing right-continuous function 0 .< K(s) < 1;

c is a positive constant. The following comments are in order:

() conditions (2-7) - (2-10) ensure the existence and uniqueness

of a uniform parabolic solution to the system in (2-6) which is

important for real system modeling and simulation by digital

computer;

(ii) conditions (2-7), (2-8) are assumed to assert that (xt,yt) are

square integrable. For example, A(t,ut) - x2 will violate

these conditions, however A(t,ut) - V/1 will satisfy these

conditions. These conditions also, imply that

f IIB(t,u)II4dt <
0

This is important since it will restrict the additive

stochastic control to the square integrable class that

satisfies E( 1 T Htu t11 4 dt)< -
0

(iii) condition (2-9) is made so that no degenerate stochastic

measure will be associated with Y. Otherwise, no uniform

parabolic solution exists for the system in (2-6) if a noise

term is missing in the equations of system (2-6);
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(iv) The conditions in (2-10) restrict the noise coefficients R in

(2-6) to a class of smooth functions of ut, (due to the first

equation of (2-10) which is a generalized Lipschitz

condition). And the second equation of (2-10) ensures that its

rate of growth is limited to at most 1near growth of ut. This

is important so that the solutions (xt,yt) do not Nexplode" in

finite time.

From Theorem (2-1) of EK1 the following results are quoted:

Theorem 2-2

Let equations (2-6) have a weak solution, (see Appendix A for

definition of strong and weak solutions), (xt,yt), te O,TJ with the

initial states (xo,y O) satisfying

E lx 0 114] <-

(2-11)

POII Y0.II <-- .

Let the conditional distribution P(x0 4 cO/y O ) be (P.a.s) Gaussian

with paramters O E(o/yo), rO- E[(x 0 -4o)(Xo-o) */y.3 and

tr(rO ) < - p.a.s. If conditions ((2-7) - (2-10)] are satisfied, then

the processes (xt,yt), satisfying (2-6), t[O,T] are conditionally

Gaussian, i.e. for any tU[O,TJ and any finite partition tj,

J-O,1,...k of [O,TJ such that 0 < t 0 <tl,...tk 4( t, the conditional

distribution

k

I

- - - - l - -
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P(xt04 CO, Xtl< al,...Xtk < at/yt ) , c Rn

is p.a.s. Gaussian, Yt is a-algebra generated by {Ys; 0 4 s < t}.

Further, it, rt, i.e. it - (xt/yt) and r t - E[(x t - it)(xt-it)*/ytJ,

are unique continuous solutions to

dits (Ait + B)dt + Kdv,

K (rtC*) (RR* )-0.5

dv (RR*)'O'5 (dyt - (Cit + D)dt), (2-12)

dl t  (Art + rtA* GG*- KK*)dt,

with 10 ax(O), r0-r() as initial conditions.

The proof of the theorem is parallel to the proof given in [K13

and [L1]. The interested reader is referred to the given references

for details. The equations in (2-12) are recursive formulae (filter)

for an optimal mean-square estimate of xt. The arguments (tu) are

omitted again for brevity. The finite dimensionality of this filter

Is due to the conditional-Gaussian assumption of the processes

(xt,yt). A schematic representation of the filter Is given in Figure

2-1 to realize a functional understanding of its design.

sL
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2-5 A Stochastic Nonlinear Control Problem

Following Lipster and Shiryayev EL2] the partially observable

system (2-6) is transformed into a completely observable system (2-

12). Consequently the minimization criterion (2-5) also must be

transformed in order to solve for the control law analytically. Let

the ut - *(t,y) where *:[O,T]xC*Rk such that # is nonanticipative,

(i.e. '(t,y) = 7(t,y*) if y(s) = y*(s) for s t). Now, if ' is

nonlinear, (xt,y t ) which satisfy (2-6) will no longer be a normal

process, but the conditional distribution of xt given {ys; s 4 t) is

still normal with mean and covariance given by (-12).

Let # (,t,R,rt) denote a differentiable Gaussian measure with

mean , and variance rt.

Define

L (t, xt , r t , ut) 3 f RL (t, C, u) d, (g, t, x, r t ) , (2-13)

where L denotes I IF - F 112, and F, F are as defined before.

If rt is nonsingular, then

d * (Q, t, i, r t) 2.nir Exp - 0.5 [-)r- d

(2w) Ir I (2-14)

where Irtl denotes the determinant of rt, and r °1 is the inverse

matrix of the covariance.

-- l
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Now, using the properties of expectation, the Bayes formula, and

the definitions in (2-13) and (2-14), the cost function in (2-5) can

be written as

T

Q(u) - E(f E (IF - 112/y s; sst)dt),
0S

(2-15)T -

a E L(t, it, rt, ut) dt.

The interchange of integration and conditional expectation in (2-15)

is permitted by a version of Fubini's theorem [R1, and it is

Justified if we are dealing with integrals of Gaussian random

processes.

Thus, an equivalent completely observable system (2-12), (2-15)

emerges where the new states of the system (1, r t ) are generated by

(2-12). But the parameters of this equivalent system are functionals

of the control law. Consequently, we have to solve a control-law

problem first. Thus, the filtering problem is actually replaced by a

stochastic-control problem, which results in a stochastic Bellman

equation. Apparently, this could lead to a more difficult problem to

solve than the original filter problem for (2-2). But as has beenIshown in [K2J an approximation to the control-law can be found

whithout solving the Bellman equation. In the mean time, the

control-law problem is formulated as follows. Let z - rt , a

_ F
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vector of appropriate dimensions. Then dz tdr and hence (2-

12) can be written 
as

dz - f(z,u,t)dt + a(t,u)dv , (2-16)

where

(A(t,u)i + B(t,u)f(z, U t) -_* 1

(k'U (tu) 0.
a(t,u) -I l ' )  )

Here the matrices are of appropriate dimensions.. But equation

(2-16) is a "degenerate" equation because the noise term is missing

in the covariance equation. Thus, as pointed out in the remark about

condition (2-9), no uniform parabolic solution exist for the system

because o(t,u) o*(t,u) is singular which implies the existence of

singular probability measure for 1, r t. Hence, the approximation

of a degenerate system of stochastic equation proposed by Fleming

[F1] which satisfies condition (2-9) is adapted here, where small

white-noise term may be added to the covariance equation. Thus (2-

16) becomes

dz e - f(z, u, t) dt + idw, (2-17)
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where ? ,I, f(.) is as defined in (2-

16). ( )

For the stochastic control problem (2-15), (2-17), it has been

shown by Fleming CF1], Davis [D], and Ahmed and Tbo [All that there

exists an optimal control for the system described by (2-15), (2-17)

if the following conditions are satisfied: Let Q (To x T)xRn where

To < T;

(i) 7, f are Lipschitz continuous in z, (z - (f , r ;

(ii) T is nonanticipative with respect to wi, I 1,2;

(iii) f, L are bounded measurable on Q (the closure of Q) for each

ueu, where u is the set of admissable controls which is

continuous for every (t,z) c Q ;

(iv) f, L are convex for each (t,z) cQ;

(v) a(t,z) - tr(oa*) is nonsingular.

Using dynamic programuing it is seen that there exists a value

function V(t, i, r) which is differentiable at least once in t and

twice in z, and which satisfies:

T
V(t,z) - inf (Etc T L(t, z, u)dt) (2-18)

u(O,T) t

The corresponding stochastic Bellman equation is
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Vt + %in [0.5 tr(a*V a) + Vzf(z, u, t) + L (z, u, t) 1 0,

and V(z, u, T) -0 , (2-19)

where V t "3 1 V 3V V z 3 -

Consequently, a function V(.) can be found satisfying equation (2-

19), i.e., with corresponding control function uO(t,z), such that

qV(t) f(t, z, u° ) + L (t, z, u° ) - (2-20)12

mi 3V
ugV [Tr (t,z) f (t, z, u) + L (t, z, u)],

then u° is optimal. Futhermore, if conditions (i)-(v) are satisfied,

then (2-17) has a smooth solution.

Intuitively, the optimal control is a function of the value

function (the solution of the stochastic Bellman equation) but the

computation (requires solving a nonlinear Cauchy-type problem) of the

exact value of the optimal control is in general tremendously

comlex. However, suggested abstract methods to solve a Cauchy-type

problm as in (2-17) will be discussed briefly.

The nonlinear Bellman partial differential equation (2-19) can

be stated in general as a Cauchy problem of the following form:

- - I ---
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Ct + H(t, x, C t , Cxx) = o, (2-21)

C(O,x) - CO,

where Ct denotes the partial derivative with respect to time, and Cx,

Cxx the gradient and the Jacobian respectively.

Roughly speaking, there are three principle approaches for

solving the problem in (2-21):

(1) Separation of variables (also called the Fourier method, or

solution by eigen-function expansion).

(2) Green function (also called fundamental singularities, or

solution by integral equation).

(3) Variational formulation (also called the calculus of

variations).

Accordingl, some of the important methods that have been

discussed in the recent literature are:

(1) The parametric method, which is developed by Friedman [F23,

(F3]. Here a fundamental solution is first constructed, then

used to solve the Cauchy prcblem.

(2) Hilbert-space method [G13. The idea of separation of variables

in the context of Hilbert space, and numerical methods are

used. This is a very elegant method but unfortunately it is

extremely limited in its scope of application.

m- r
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(3) Function theoretical method [G21, where the theory of integral

operators is used. But there is no unique method to determine

the Integral operator, and hence a general solution.

(4) Characteristic method, [821, where the idea of reducing the

P.D.E. problem to an O.D.E. problem, through the use of the

corresponding characteristic function. Then a set of

Hamilton's equations is solved by simple integration. This

method guarantees a solution only where (t;x)+X is invertible,

that is, as long as the characteristics do not intersect. But

any nonlinearities in the Hamiltonian lead to crossing of

ciaracteristics. Hence, the application to nonlinear systems

is limited.

(5) Transformation methods CA3J, where the transformation may be

applied to either the dependent variable, the independent

variables, the equation itself, or any combination of these.

However, the initial-condition transformation may be a real

problem in this technique. For example, if the equation in two

independent random variables tct + xc x = 2txc, c(O,x) = a, is

transformed by v = tx into the ODE, the single variable v can

take on only a single value on any manifold tx = constant.

The choice of method of solution to (2-21) from the above

suggested techniques, depends largely on the following factors:

(M) degree of nonlinearities in the system, (i.e. some of the

methods may not be applicable);
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(ii) degree of difficulties and complexity of the method.

However, the transformation method seems to be the most

promising one due to its simplicity and the existence of various

transformation techniques (e.g., the cononical transformation and the

similarity methods). For example, if the system in (2-19) is first

order, then the following method transforms the system to a

quasil inear system.

Ct - -H (t, x, Cx), (2-22)

C(O,x) = f(x)

Let P denote Cx and q PO = Ct. Then by differentiation with

respect to t and equating mixed partial derivatives, the following

quasilinear system is obtained:

Ct q,

Pt = qx, (2-23)

qt = -H (t, x, P) - Hp (t, x, P) qx,

C(O,x) - f(x),

P(Ox) - fx(X),

q (p,x) W -H (O,x,fx(x))

That is if C is a twice continuously differentiable solution of

the Bellman equation, then (C, P, q) is a solution of (2-22), and the

converse can be proven to be true also.
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2-6 An Optiml Finite-Dimensional Filtering Algorithm

The general filtering algorithm consists of the following steps:

Step I - Approximate the given nonlinear system, (i.e. the

system in (2-2), by a bilinear feedback model that has the form in

(2-6), where the parameters are linear nonanticipative functions/

functionals of the control ut , (which is measurable with respect to

the a-algebra Yt a {Ys; s sC t).

Step 2 - Choose the performance index for the global filtering

criterion as in (2-5), which is also a measure of the quality of the

model approximation in (2-6). If at which minimizes (2-5) is

obtained, then (2-6) is a "close" model approximation to (2-2).

Step 3 - If the parameters (A, B, C, D, G, R) satisfy the

conditions in (2-7)-(2-10), then the corresponding finite-dimensional

filter has the form as in (2-12), with its parameters as functions or

functionals of at

Step 4 - Transform the performance index defined in Step 2 to an

equivalent criterion as in (2-15) using (2-13), and (2-14).

Step 5 - The system in (2-15), and (2-17) forms a completely

observable stochastic control problem, which should be solved by

classical dynamic progranmiing to find the optimal control at

Step 6 - Once the optimal control ut is obtained from Step 5

and then substituted back into both (2-6) and (2-12) a model

approximation as well as a finite-dimensional nonlinear-filter

approximation will be generated.
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Remarks:

() The assumption that the solution of the control problem in Step

5 is close to a , which minimizes the performance criterion

defined in Step 2, resembles the assumption in the EKF

approach, and closes the approximation procedures.

(ii) In general, the stochastic-control problem in Step 6 results in

the nonlinear Bellman partial-differential equation as in (2-

19). Hence, it may be no simplification as compared to the

original problem of finding a filter for (2-2). This is an

indication of a possible problem one will encounter in using

this approach if the exact value of the controls are required.

However, as was emphasized in [K2], the structure of the

optimal control suggested by an approximate solution to the

Bellman equation, which results in an approximate control that

yields a better performance filter than the EKF.

The following example [K2] illustrates the previous

filtering algorithm steps:

Let dxt - a 1xi dt + dwl,

(2-24)

dyt a xtdt + dw2 .
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The bilinear feedback approximation model is

dxt 5 t xtdt + dw , (2-25)

dyt xtdt + &2; tceO,T],

where it is chosen to minimize
tt

Q(u) - m4n E( (a IxI - xt)2dt. (2-26)

From (2-12), the optimal (m.s.e)-filter equation has the following
form:

dit a titdt + rtdvt, (2-27)

drt a (20 r t + 1- rt 2 ) dt,

where dvt - dyt - tdt , is the innovation process, having relevant

properties of the Wiener process. Now from (2-13), (2-14) the

equivalent minimization criterion to (2-26) is

T
Q (t, , t) - m~n E f (a ICI - d)2 d(C), (2-28)

0

where do(O) is as defined in (2-14).
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Using the dynamic-programming approach for the stochastic

control system defined by (2-27), (2-28) one can show [02] that the

optimal 0 is given by

-a 2'r exp (2 ) - 2(;2 +i) erf (-

(2-29)

(r , o3 + aW)(.,r)

where erf(G f a 1 e-0  2 d

Here, V is the solution to the Bellman equation

3 0 . r2 +2(1- r2) + a-A + r) (a' - 2 ) = 0,
TrW az

V (T, i, r) - 0. (2-30)

The above partial differential equation is very difficult to

solve analytically, and it is a good indication of the possible

problem one may face while attemting to solve the stochastic problem

defined in Step 6 of the algorithm. However, an approximate solution

to (2-30) of the form

-2
- xt

V( r, tt- p(t) exp (-7) , p(T) 0, (2-31)
t

I
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when substituted into (2-29) yields the approximate control

2irr exp(- - 2 erf ( - 2U a a(- ( 2-32)
it([ + r)

which as shown in EK2J gives better performance than the EKF.

- -
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CHAPTER 3
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3. APPROXIMATE - FILTER STRUCTURE

In this chapter a new filtering structure for approximating a

certain class of large-scale nonlinear filtering problems is

presented. A major feature, i.e., a decomposition scheme is

incorporated into the filter design. The motves to develope this

scheme are: one, to resolve the "curse" of dimensionality

encountered if an optimal approximations is sought, due to the

requirement of solving a control problem which is a function of

(n n(n+1)) variables. In general, this is a very difficult

problem to solve. Two, to alleviate the difficulties with respect to

control policy definition and calculation, which arise if the (T14F)

is applied directly and the global properties are assued, but an

approximate control is sought. Finally, using this scheme will

reduce the complexity of the algorithm, and results in significant

computer saving in the digital simulation.

The strategy adapted in this decomposition scheme is based on

the decomposition of the system into two inter-connected

subsystems. The definition of the subsystem can be imposed using

purely physical reasoning. The first subsystem is only linear and it

will act as a first stage of the filtering process. The second

subsystem includes all the nonlinearities in the system, which are

then approximated by the proposed two-step nonlinear filter (TNF).

This scheme has the following advantages:

i_ _ _ _ __ _ _I _ _ I_.. ...

______________I_____I________________Ir
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(i) only the linear filtering problem is solved in the first level;

(ii) the control parameter which is needed in the TNF algorithm,

will be easy to obtain as a function of the parameters of the

first stage linear filter. So, no difficulties with respect to

measure theory or control policy will be encountered if the

global filtering criterion is retained;

(iii) in many cases, there is a substantial computational saving as

compared to the global single system solution.

An interesting class of nonlinear system has the following form

dxt - F(x,y,t)dt + G(x,y,t)dw, (3-1)

dyt - H(x,y,t)dt + o(t)dv

where w,v are mutually-independent vector Wiener processes of

appropriate dimensions; a(t) is a matrix of compatible order. The

functions F(.), H(.), and G(.) can be partitioned as follows:

F(x,y,t) - fi(t) x + f 2 (x,y,t) , (3-2)

hlt)x'1
H(x,y,t)- h ( y y  ,

h 
!y9)
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G(x,yt) g1 (t) + g2(x,yIt)

Here, fl, hl, and g1 are linear matrices of appropriate dimensions

and f 2 , h2 , and 92 are nonlinear functions of their arguments, and of

compatible orders.

The general outline of the decomposition scheme and filtering

algorithm are: (1) the given n-dimensional system as in (3-1) is

decomposed into two subsystems. Subsystem I consists of a linear

system, (i.e. linear dynamic and observation equations). Subsystem

II is a nonlinear system, which contains all the nonlinearities of

the original system and is approximated by the proposed model space

approximation.

(2) Apply a classical filtering technique, i.e. the Kalman-Bucy

algorithm [02) to the linear system in Subsystem 1. This will be

considered as the first stage of the filtering algorithm.

(3) Find an appropriate bilinear approximation model to the

nonlinear system in Subsystem 11.

(4) Finally, from Subsystem I and the bilinear approximation of

Subsystem 11, form a new system. This new system will be of the form

that has a finite-dimensional, conditionally-Gaussian filter as in

(2-12) if certain assumptions (2-7)-(2-10) (See Chapter 2 Section (2-

3).) about the system parameters are satisfied.
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The block diagram representation of the decomposition scheme and

the filtering algorithm is given in Figure (3-1), while a detail

schematic representation is given in Figure (3-2).

To summarize, the various algorithmic steps are:

Step 1. The given nonlinear system as in (3-1) can be

decomposed into two subsystems.

Subsystem I

dxft- fi(t) x dt + g(t)dw

(3-3)dyft- hl(t) x dt + al1(t) dv 1 ,

where fl, hl, and g1 are as defined before, and w, v1 are independent

Wiener processes of appropriate dimensions. The subscript f denotes

the first subsystem.

Subsystem 1I

dxsta f2(x,y,t)dt + g2(x,yt)dw , (3-4)

dyst" h2 (x,y,t)dt + a2dv 2 ,

where the subscript s denotes the second subsystem, f 2 (.), h2(.), and

92(.) are generally nonlinear functions of their arguments, and w, v2

are independent Wiener processes of compatible orders.
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Step 2 The Kalman-Bucy filter equations for the system in (3-3)

are:

dft 3 f1~fdt + phl ( )l-)ldnt , (3-5)

dpt a (f 1p + pfl* + glgl* - ph1*(O 1 )'lhlp) dt

dnt dyft - h, ift dt

If(O) - E(xf(O)) , p(O) -coy (xf(O))

where if is the estimate, and p(t) is the error covariance matrix.

Here dnt is the innovation process.

Step 3 The bilinear approximation model for the system in (3-4)

has the following form:

dx5 " - 2 (t, utx) dt + 92 (tut) d 3-6)

dy s - h2 (t, ut , x) dt + 2dv2

where

f2 (x, ut, t) -I ui(t) xi(t) + Un+I(t) A(t,u) x + B(t,u)
i-i
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h 2(x,u t't) =j~juj(t) xi + Un+1(t) -C(t'u) x + 0 it,u),

(3-7)

(tut) = go (t, ut)

Here n, the dimension of the system, and the second equality, is used

for mathematical convenience. The control u1 (t), 1 - I - j = 1,2--

n+1 are measurable with respect to a-algebra fyfsScEO,t]}, and are

chosen to minimize the following global filtering criterion:

Q(u) - win E T (k-k)2 dt. (3-8)

Using the property of expectation and Bayes formula, (3-8) becomes

T -E

T t -2
a Win E (f E (k-k) dt) , (3-9)

1 0

-Wn E (f H(x,u) dt )
1 0

where Et denotes the conditional expectation. Here again, k denotes

any of the functions f 2 , h2 , or g2 , while Z denotes the corresponding

-- *...,.~..~ i
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approximation f 2 h2 1 or 42 in (3-7), and H(x,u) - Et(k-02). The

arguments (t,y,x), (t, ut) are omitted for brevity.

The minimization of (3-9) with respect to u1 , 1-1,2,...n+1, can

be performed since the expectation is conditioned on the a-algebra

(yfs; se[O,T], which is not a function of the parameters ul , 1

1,2...n+1. Moreover, the parameters ul, 1-1,2...n+1 are functions of

the states x, 1-1,2...n but the states xi, 1-1,2...n are not

function of the parameters ul, 1-1,2...n+1. In fact, the problem can

be treated as a special case of an open-loop control problem formed

by dynamics (3-6) and cost (3-9), because as far as the newly formed

problem is concerned the parameters ul, 1-1,2...n+1 are functions of

t,te[O,t]. According to the argument given in Chapter 2-Section (2-

5) and C2, u1 can be found by solving the following equation:

+ 0.Str (oyxxa*) + win [Vxf(x) + H(x,u)] - 0, 1 - 1,2...n+1,1 (3-10)

where f(.) denotes any of the functions f 2 , h2 , or g2 , and Vt, Vx ,
are as defined in (2-19). But as pointed out earlier, f(x) are not

functions of u1 1-1,2,...n+1,

thus af(x) . 0

and (3-10) can be written equivalently as

__________________
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Win (Ilx,n)] - O, 1-1,2,...n+l . (3-11)
1

Now, to obtain the parameters Ul11,2,...n+1

which minimizes (3-9), a set of equations resulting from (3-11) must

be solved simultaneously and as pointed out previously, they are

functions of (Rf, p).

Step 4 The new equivalent system has the following form:

dxt - (Al(t,ut) xt + Bj(t,it)) dt + G(t,t) d,
(3-12)

, t "(C 1(t,5t) x t+ D1(tt)) dt + adv,

where

A1lft, t) - f1 (t) + Alt, t, B1(t t 0 Blti 0 ,

Cl(Dttatt)J
kC(ta (o)a

Gilt,'it) - g1(t) + g0(t, t), 1(t) 0

,Cl, t0 02t, t ]
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Here again the matrices are of compatible orders.

Step 5 With certain assumptions about (A1 , B1 , C1 , DIG 1, a)

and the distribution of the Initial state x0 given y0 (see Chapter 2

Sections 2-3), the corresponding conditionally-Gaussian filter is of

the following form:

dit a (Alit + B1) dt + S dv,

S- (rt C1*) (3*) " 5 (3-13)

dv (co*)'0"5(dy0 
t - CC it + B1 dt),

dr t  (A1 rt + r t A,* + G1G1* - SS*) dt

where A1 , B1, C1, 01 are as in (3-12), and the arguments (t,ut) are

again omitted for brevity. A second-order example to demonstrate the

above algorithm steps will be given in the following chapter.

Iuarks:

(I) The controls Ul 1-i- -,2,...n+1 are suboptimal, since they

are functions of the observations in the first stage. If all

of the observations are used in the first stage (i.e. the

observations and the system are linear), then the controls
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Ul 1 ' 1,2,...n+1 are optimal (in m.s.e).

(ii) In using this algorithm, the control parameters are obtained

without solving the stochastic Bellman equation. However, it

is still necessary to evaluate the conditional-expectation

expressions in (3-9).

(iii) In general, the state estimate obtained in Step 5 is an

improvement relative to that obtained in the first stage, and

that due to the use of all the information in the last step.

(iv) If a "local-time" filtering criterion is assumed, then, as has

been shown by Kolodziej and Mohler in [K3J, there is no

control-law calculation since the approximation parameters are

not functions of ut. But, the evaluation of similar

conditional-expectation expressions are still required.
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4. 1W APPLICATIONS AND
SIMULATIONS STUDIES

The implementation of the proposed two-step, nonlinear filter

(TNF) are demonstrated via applications to a certain class of

nonlinear system. In CK2] the applicability and effectiveness of the

filter have been demonstrated for a nonlinear system that lacks the

usually necessary model "smoothness". Obviously, the TNF is also

applicable to "smooth" models as demonstrated herein.

The examples that are treated here were chosen from practical

applications to illustrate the proposed procedures.

The claim made for improved performance, are verified through

computer simulation results in the following sections.

4-1. Gene-al Simlation Cments

The digital-smulation examples that are discussed in the

succeeding sections, were coded in FORTRAN in such a manner that the

program generates solutions to the states of the original system, and

the estimated values of the states by both the TNF and the EKF.

Moreover, throughout all the simulation cases, the Wiener processes

wt which describe the excitation noises are generated from pseudo-

random Gaussian variables vi N(0,1). The latter generated by a

standard (IMSL) Library Subroutine. And, increments of wt are

approximated by dw • v, where At is the integration step-

i aIl n i l m" ui
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size (.001 to .0001). In the simulation, a fourth-order, Runge-

Kutta integration algorithm is used for all trajectory filters and

differential equations of both the original system and the error-

covariance matrices.

The performance of the two filters are comared on the basis of

the "ean-square error (m.s.e) of the filter output to xt such that:

JTNF -LT(X(t) - Tv(t)) 2dt

(4-1)

JEW 0 LT ( x l t ) " K i (t) 2dt ,

and JJ gives the relative (percentage) difference between JTW(t),

JKF(t) such that

JE -(t) " JTNF(t) (4-2)
JEKF

Actually, nmerous simulation tests were condcted during these

simulation studies, however, only a small representative sampling of

the results have been presented here. Nevertheless, these results,

together with the ones presented in [K2J, clearly dmonstrate the

effectiveness of the proposed filter. It should be noted that

throughout the simulation process, the following identification

symbols have been used to identify the different plots in the

succeeding Figures of the sequel: the 'a (solid line) is used to

_ I___ I__I ____
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identify the state trajectory of the original system, "v* (dashed

line) to mark the output of the TNF, while Ox" (dashed line) is

reserved for the output of the EKF.

4-2 Exmple 1

An important underwater application is the sonar tracking of a

moving rigid body. This could be an active tracking of multi-mode

range system or passive tracking with multi-receiver-transmitter and

correlated time delay. The rigid body considered here is a point

mass.

4-2-a Problem Definition and Model Forilation

The problem at hand is to develop an optimal, (or at least

suboptimal), nonlinear finite-dimensional estimation algorithm for

the range and range rate of a rigid body based on the noisy

observation of its position and velocity provided by a sonar signal.

The state vector, (Range - x1 , Range Rate a x2 ), evolves accord-

ing to the following stochastic differential equation [P13:

dx - A x dt+Gw , (4-3)

where, dx - , A r , G -
dx 2 0
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w is a Wiener process. Here x2 is influenced randomly by target

maneuver which is characterized by T the maneuver time constant.

The measurement equations are nonlinear due to the "acoustic

propagation" time delay, when tracking is derived directly in current

time. The observation equations are

dy - H (x,t)dt + Rd w2 , (4-4)

where dy a H (x,t) @ , R1

dY2/ x? (0 02

w2 is a Wiener vector of measurement noises, B1  a/c, a is a

constant, and c is the average speed of sound in water.

4-2-b Filtering Algorithm

To find an approximate finite-dimensional filter for the

nonlinear system in (4-3), (4-4), the decomposition scheme and the

corresponding filtering algorithm, discussed in the previous chapter,

are utilized.

I

_______________________



56

Subsystm I

Here only the ,-ange rate information is used. Thus, the linear

system and observation equations are:

dx 1 - x2dt

dx 2 m - a x2 + c1 a & 1

(4-5)

dy 2 = x2 dt +a2 dW2 '

where c1 is a multiplicative constant. Using the Kalman-Bucy method,

the estimate xf , 1 - 1,2 satisfies the following linear

stochastic equations:

P3
dif * 2 dt + !d ,

2f a2

di 2 f" "ax2fdt + - dr'
62

where Rif * E(xi/y 2 ), i - 1, 2, the conditional expection, and dv

is the innovation process. The corresponding error-covariance

equations are:

V 1 (2P3 - P3
2/ a22) dt, (4-6)
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dP2 + (-2P 2 + C1 a -1 2  )dt,
02

Subsystem 11

Let x1x2  (ulx1 + u2x2 + u3) . (4-7)

Here ut, i - 1,2,3 are measurable with respect to the a-algebra (Y2s;

se[O,t]), and chosen to minimize the following global criterion:

T
J(u) - win E (f (xlx2 - (u1x1 + u2 x2 + u3))2 dt. (4-8)

Equation (4-8) can be written equivalently using the properties of

expectation as

T

J(u) - %n E C E (x1x2 - (u1x + u 2x + u3 ))2/y2s;sd[OT) dt]

Tt 22 CIER(x 12 dt] *(4-9)

1 • 0

where K ujx1 +u2x2 +u3 x3
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R 2 x x 2  .

Let H(x,u) - Et(x1
2x2

2 ) - Et(R) + Et(K2 ) (4-10)

Then (4-9) becomes

J(u) - mn E (f TH(x,u) dt) . (4-11
1 0

Here, the minimization in (4-41) with respect to u1 , 1 - 1,2,3 can be

performed since the expectation is conditioned on the o-algebra (y2s;

scfO,t]) which is not a function of the parameters ui , i a 1,2,3.

And the fact that the unobservable states xi, 1 a 1,2 are not

functions of the control parameters ui, I - 1,2,3. Accordingly,

N1 0 for i - 1,2,3 . Now, using similar argments as in

Chapter 3, the minimization of (4-11) requires that

Vt+ 0.5 tr (a Vxx a*) + mn [Vx xlx2+ H(x,u)] - 0 for 1-1,2,3

(4-12)

Thus, performing the minimization with respect to u1 , 11,2,3 in (4-

12), the following set of equations (which must be solved simultan-

eously) are obtained:
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- 2 Et(xl2x2) + 201 Et (x1
2 ) + 203 Et(xl) + 202Et(xlx 2) - 0,

- 2 Et(x2 x 1) + 2 02 Et(x2
2) + 2 U3 Et(x2) + 2 U1Et(xlx 2) -13)

(4-13)

-2 Et(xlX2) + 2 03 + 2 01 Et(x1
) + 2 G2 t(x2 0 

To calculate Ul' U2, U3, which minimize (4-9) or (4-11), from (4-

13) the conditional expectation expressions oust be evaluated

first. From the basic definition,

Et(xt2 ) .pi + *2 1,2. (4-14)

To evaluate the expressions Et(xi2xj) Et(xtx 2

Et(xixj) . i~j - 1.2 . the results of Lemmas (B1, 82) from Appendix

B are utilized. Thus,

Et(x1
2xj) , 2 1tutj + Ij ujI

(4-15)

Et (x xj2) -2I1 utj + I u,

Et(xjxj) " ZtRj + P3

t ___ ____ ____ ____ ___3
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Then, from (4-14), (4-15) in (4-13),

U1  2f S (4-16)

U2  i~f

3 " 3 ilf 2f

Hence, X1 X2  X 2f X1 + 2 fX2 + P3  XfX2f " (4-17)

Then, the new equivalent system is

dx- A x dt+ Gdw1  ,
(4-18

dy H H x dt + D(M) dt + Rdw2

where H W l)-,L 0 1] 0

0
R -; A, G are the same as in (4-3).

0 c2
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Now, assume the following:

(i) if f denotes any of the functions A, G, H, 0, R, then

T
P ( If I dt<-) <1;0

(ii) x0 given yo is conditionally Gaussian. Then, from (2-12) the

corresponding conditionally-Gaussian filter is

di U i2 dt + 17 (r + (1 + u 1 ) + Blia r3) dv1 +-r dv2
02 (4-19)

r
2

d 2  -Ux2 dt + 1 (r3 (1 + dv1  + Bl.2 r2) dV1+-- dv 201 02

where,

dv 1  - (1 + i1 1i + Y2 + B13)

dv2  dY2 -

and 81,* are defined as before.

The covariance equations are

dr1 - {(r - 1- ) + r+8)  +r3 2+ dt
01 02

d r2 c2 2 2- [+ rB 2  r22

3 (r3 1 1 + -) r ]d,
02
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d r3 - {r2- mr3- .. (rl(l+B011 ) + r3B102) (r3(l+.Bll)

(4-20)

+r 2 B1 02 ) - .- 7 (r 2 r 3 )I dt,
02

where 61, U2 , u3 are as in (4-16).

Notice that in this case (4-19), (4-20) are the same as the filter

equations of the modified-second-order truncated filter defined by

Jazwinski (J3] because the nonlinearity is of second order, although

the aparoach is different.

4-2-c Extended Kalmn Filter

The filter equations are £J1):

d 11 - 2dt + .1 7 C(1+8 1) P1  + p3Bp,1 1 dvj

+P3 dv2
2 ' (4-21)

2
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dX2  - tdt + ca (1 + 8112) P3 + P2B1 1 )J dv1

+ P2 / 022 dv2

where Bl, are as defined before, and

dv1 - (cy1- (1 + Bl 2) I),

dv 2  - 2 92)

The covariance equations are:

d ,1  .{ 2P3  -2. i + ) P 1'" P32 p3 ) 2-~ w,-12% (1 + YO}+;~p) =

(4-22)

2
V -c 1

2Q2 - 2P 2- - (1 + BI 2i)P3 + 81 1p2 1
2 - .2 dt

Ol 02

dP3 " {P2 " P3 " (-11 (1+1i 2 )P1
+ ielBP 3) ((1 + Bli2)

P3 + 9P 21) - P2 3 dt

__2
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4--d Slimulatiom Results

Here, the previous sonar problm is simulated, where both

equations (4-3), (4-4), and the TNF, EKF equations, (4-19), (4-20),

(4-21), (4-22), were solved by the digital computer. Numerous

simulation tests were conducted for this problem using different

initial conditions and parameter values. But only a representative

sampling of the results have been presented here. These simulation

results were tabulated in Tables (1,2), where JJ1 represents the

percentage position (range) error (in m.s.e) accuracy of the TNF as

compared to the EKF, while JJ2 represents the percentage velocity

(range rate) error (in m.s.e) accuracy of the TNF as compared to the

EKF range-rate output. In all cases, JJ1, JJ2 were calculated

according to the equations in (4-1). In f gures (4-9) - (4-16) the

range root-man-square (rms) error Q(t), Q2(t), and the rms velocity

error VQ,(t), VQ2(t), for both the TW, the EKF respectively, were

calculated as follows:

IL )xjM(,)' x (t') 2

Qi(t) 1 (xj(t. IL 1 (4.23)

IL

VQ___I__L_(4-24)
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where (xj(i(tk), ij(')(tk)) are the jth components of the true

state and its corresponding TNF, EKF estimates at time tk on the ith

simulation run, in a series of IL runs. For completeness, some

comments on the filter initialization seem in order here. Under

actual operating conditions it is extremely difficult, and indeed

rare due to one reason or another, to obtain reliable initial

estimtes of the state vector and its associated covariance matrix.

Consequently, the following set ' of initial conditions are

realistically chosen. Throughout, the initial range value is 5000

meters, while the initial range rate value is assumed constant and

chosen from the following set. (SOm/sec, 500 i/sec, 1000 m/sec). The

initial condition of the estimates are calculated according to the

following equation:

ii(0) - x1(0) + 171OTn t , iul,2 (4-25)

where ni is a random noise. The initial covariance matrix is:

P 1
(0 ) P3 (0)] [I 0 6 1021

P(0) j a L o
[P3 (0) P 2(0)J [10 2 104J

where the diagonal elients of P(O) are chosen relatively large so

that the filter will "forget" the initial values as more data

________________________
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arrived, and to ensure the randomness of the intial estimates. In

all cases, a system noise of 1% of the initial state values is used,

and different levels of measurement noises (from 2% - 20%) of the

initial range, range rate respectively, are added. For convenience,

the time interval for each run is 10 seconds, and the number of runs

for each simulation test case is between 10 to 20 runs. Thus, all

results have been ensemble average over IL runs; [the number of runs

for each simulation test (10 to 20)].

The effect of increasing the nonlinearity, (i.e. increases a),

of the system on the filter trajectories and the rms error levels are

demonstrated in Figures (4-2), (4-6), (4-10), and (4-14) as comared

to Figures (4-1), (4-5), (4-9), and (4-13) respectively. Accord-

ingly, the TW performance imroved substantially, and the rms-error

levels increased enormously as compared to the s-error levels of

TNF. The above conclusions are also demonstrated by Table (1).

In comparing Figures (4-3), (4-7), (4-11), and (4-15) with

Figures (4-2), (4-6), (4-10), and (4-14), it is noticed that an

increase in the velocity measurement noise standard deviation a2 by

10% will degrade the performance of the TNF, and improve the

performance of the EKF, while the s-error levels significantly

decrease. However, the TW still performs better than the EXV.

Comparison of Figures (4-4), (4-8), (4-12), and (4-16) with

Figures (4-1), (4-5), (4-9), and (4-13) respectively, and Table (2)

indicates that the EKF gains in accuracy reiative to the TW as the
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observations become more noisy (i.e. increases the range measurement

noise standard deviation, o1 to 20%). This is due to the fact that

the nonlinearity, (here in the range measurement equation), is masked

by the large measurement noise. In essence, this t.s in total

agreement with the remarks pointed out by Jazwinskl [J11 in his

criticism of Schwartz's simulations ES2J.

Finally, it is generally noted that the mean-square errors

Q1 (t), VQ1
2(t), Q2

2 (t), VQ2
2 (t) of the estimators and te optimal

error covariance rl(t), r2 (t), and Pl(t), P2 (t) of the TNF, EKF

respectively are not the same. That is due to the fact that

averaging over (IL) samples paths (10-20) does not give a good

approximation to the expectation.

From the tables and figures mentioned above, the following

remarks seem in order:

() In almost all the cases, (except Table 2), the TNF shows

significant improvement in filter accuracy as compared to the

EKF.

I1) In general, the TOF range rms erto, and velocity rms error are

much smaller than corresponding EKF as shown in Figures (4-13)

- (4-16). This clearly demonstrates the effectiveness of TNF

over the EKF.

. . . . . .. ...-
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(iii) The computer utilization cost of the TNF is around 10% higher

than the cost of the EKF, while the storage requirements are

relatively equal. Thus, the computer cost consideration will

not be a preference factor as far as this application is

concerned.

(iv) Finally, the complexity of the proposed algorithm (TNF) over

the EKF might be justified by the significant improvement in

the filter accuracy.

I

... ... .....
IiI

_

Ill 
I 

i i 
m



69

4.3 Exmp1e 2

In this examle a new nonlinear filtering and tracking technique

1K33, which is similar to the TNF, is applied to a passive-sonar-two

dimensional problem. This technique is suited for the type of

problem under consideration, where the observation equation is

scalar. Thus, application of the TNF will encounter difficulties

with respect to control policy calculation. However, this new method

does not require control calculation, but unfortunately, the global

properties are lost.

4-1-a. Problem Deftintion and Model Formulation

This problem describes the two-dimensional, bearings-only target

motion tA2]. Figure (4-17) presents a geometric configuration of

both the target and the observer, where it is assumed that both lie

in the same horizontal plane.

It is assumed that the system behavior evolves according to the

following stochastic differential equations:

= A x + 5 U + G wt, (4-26)

where

_________ c-.- i



X1. relative range component in the x direction 70

x2 , relative range component in the y direction

x x3 . relative velocity component in the x direction

X4, relative velocity component in the y direction

ux - Uox , relative acceleration in the x direction1

U I,

uY- Uoyq relative acceleration in the y direction J

ux, uy are acceleration of the target in the (xy) direction

respectively,

S0 01I0 0 0 0 0
0  001 a.0a 0A a- 0 0 0 1 B-a 0 0 G"a 0 0

0 0 0 0 -1 0 R1 0

0 0 0 0 0 -1 0 R2

Here Wit, (wltx, Wity). is an additive noise to model random target-

acceleration fluctuations from the assumed constant velocity

trajectory, (with ux - y - 0).

The masurument data consists entirely of passive sonar bearings

as follows:

o(t) -Arctan [xi(t)/x2 (t)] + ai(t) , (4-27)

_ _ _ _ _ _ _ _ _ _ _
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where O(t) is the measured target bearings, and n(t) Is an

independent additive Gaussian measurement noise and has variance

a2 (t). Moreover, the observation is almost spacially continuous if

we consider the scenario for an isolated submarine tracking a surface

ship or far distance submarine. Now, if we let dy - odt then (4-27)

can be written as

dy H H(xi,x 2,t) dt + a , (4-28)

where dw2  Tit dt is a Wiener process, H(t) z tan"( X-).

4-3-b. Filtering Algorithi

The system in (4-26), (4-28) is a nonlinear system with

nonlinear obseivations. In (A2], [C1], it has been shown that the

EXF suffers from the mill-conditioning" phenomena due to the error

covariance-mtrices false observability [A2]. The new approach (K3J

proceeds as follows: First, the approximating system is defined with

A (xl,x 2 ,Yt) -h 0(y) + [hl(y), h2(y)[] . (4-29)

Now assume the following:

(i) if f denotes any of the functions F, B, G, ho, h1 , h2 , then

I1_ _ _ _ _ _
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TP( f Tlfl dt <-- 1;

0

ii) x0 given yo is conditionally Gaussian;

iii) ho , hI, h2 are Yt measurable.

Then, an approximating model for the target and receiver equations

(4-26), (4-28) is presented by:

dx a (Ax + BUo) dt + G dw1 ,

(4-30)

dy - (h0 + kx) dt + a d w2

where k - (hI , h2), w1 , w2 are independent Wiener processes, u0

luox , uOy), the observer acceleration. The arguments (xl, x2, y, t),

(y) are omitted. Also, the assumptions significantly provide that in

(4-30) xt, yt are conditionally Gaussian. Hence, from (2-12), (see

Chapter 2-Section 2-3), the recursive formulas for xt (the

conditional mean), and rt (the conditional covariance) are:

cdt - (AR + SuO) dt + [dy - (h0 + kIt) dt]

(4-31)

drt - (Art + rtA* + GG* - SS dt,

where S ar- M - Chl, h 0, 0]

-T--. _ 2
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The recursive formulas in (4-31) will completely characterize the

filter equations if ho, h1, h2 are obtained. Now, using the

following mean-square criterion:

J(u) - E(IIF - FI1 21 (4-32)

Now, from (4-28), (4-30) equation (4-32) can be written as

J(u) - E J(H - (h0 + kx)(H - (h0 + x* k'}

a E {Et(H 2) + h02 + kEt (xx*) k* - 2h0 Et(H)

+ h0 kEt(x) + hoEt(x*) k* - Et(Hx*) k* - KEt(Hx)}

i (4-33)

where again Et ( ) i the conditional expectation operator.

Let

a - Et(xx*) p-1,

b p-,

c " Et(x * ) p-, (4-34)

m, , • mI I------,,.
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d -Et(H*)o(Et(H))Z Et(x*) Et(Hx*) Et(H) + Et(x) Et(Hx) Et(H)

.Et(Hx* ) Et(Hx) - Et(x) Et(x*)[Et(H)] 2 P-,

e0 - h0 + k Et(x) - Et(H)

I1 a h0 Et(x*) + k Et(xx* ) - Et(Hx*).

Here P is a 2x2 positive definite matrix.

Now, (4-33) can be written, using (4-34), as

E {(a e0eo* + b ele* * - ee*c + d) (4-35)

Since ab > c c, then the minimization of (4-35) requires that e0 - 0,

ela 0. Thus,

ho * Et(H) - (Et(Hx*) - Et(H)E(x*)] P-1 Et(x) ,

(4-36)

k [Et(Hx*) - Et(H) Et(x*)] p-1 - [h 11h2  .

Hence, from (4-36), (4-29) becomes

A (x1 x2,y,t) - Et(H) + [Et(Hx* ) - Et(H) Et(x*)Jp'l(x-Et(x)) .

(4-37)

To evaluate the conditional-expectation terms in (3-36), the

following approximation, (see (2-13), (2-14)), can be used.

____ ____ __ ____ ___ ____ |
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Let f denote either of the functions (H, Hx*), then,

Et(f) f f(Cyt , t) d (R, rt, ) = f (, y, r, t)
R

(4-38)

where d * (It. r, c) is a differential Gaussian measure as defined

in (2-14). Thus, using (4-38), (2-14)

Et(H) - ffarctan (x 1 5Exp 0.5 (x-i)*rl(x-i)] dx dx2 ,

(4-39)

Et(Hx*) [ [Et(Hx 1), Et(Hx 2 .)], (4-40)

Et(x -- arctan Exp - 0.5 C(x-l)*r "l (x-1)] dx dx 2 ,

(4-41)

E(x2) z,..mnif fx 2  rtn-Ex - 0.5 E(x-i)* r1'(x-i)] dxldx2.

But, analytical evaluation of (4-39), (4-41) is very difficult.

Thus, the following approximation scheme is used, where the arctan

function is first expanded by Taylor series for a function of two

variables, then find the conditional expectation for each terms using

equation (4-38), (2-14). Thus, using the Taylor series expansion up
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to the fourth term (n-4), and utilizing (4-38), (2-14), Lemma B2

(Appendix B), (4-39) becomes

Xi Xi (i 2(r2-r1) + r12(1l 2-x2 2

Et~arctan - arctan(-) + , ,x22 az

+ [3r2 (i1 4 + j24 - 6 1 2 12.)(r -r2) (4-42)

+ 1Y'22-i1 2 123r 2 r2 _ 6(1r2+ 2r12)]/a4  ,

where a 1 (12 + 2 2).

Also (4-41) becomes

t i - t i2-E (Xarctan -) a x1E (arctan -) + A + 8l+C 2 r1 22 (4-43-a)

+ C1 r1 r 12 1
+ C3 1 2
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Et(x 2 arctan-2.) " fEt(arclan Zxd.) + A + B1 + C1 r22 X1

(4-43-b)

+C 2 r 2 r 12  2 +C 3 X2  1

where

A t [r1 i2 r1 2 i1  Er12 i2 - r2 ;1

a " A2 "

(4-43-c)

(r1 r2 + 2r122)(i23- i13)

1 'a

C T2 3; 22 (3i12 x221

a a 2  (4-43)

C3 -3r 1 r 3 1 Cl

C4  -3 r 2 r 3 i 2  C 2

Therefore, from (4-42) and (4-43), (4-36) becomes

h- dElk1 r2 - k2 r123

(4-44)

-.
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h2ad, Ck2 r, k, rl2,

where

kia (A1 + B 1 + C 1 ii r, r3 + C3 + C2 i 2 r, 2

k2 a A2 +81 .+C2 1,r, r3 + C4 + C2 1 r221

Al, B1, C1, C2, C3 are defined in (4-43). But. in (4-31)

S [4rtMt]),M- hI, h 2 3.

Then, from (4-44),

rr 1 h 1 +r 1 2 h 2 's

S r21h, + r2  h, S
a ,3 1+ r 23 h 2  53 (-45)

r4,+ r24 h, 54

Thus, from (4-45), the filter equations (4-31) becom

dt (At +8 0) dt *j(4Y- Et(H) dt)
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(4-46)

d "- (A r t + rt A* + GG* - SS*) dt

where S is given by (4-45), Et(H) by (4-42), and A, G, B by (4-26).

Here Ft is a 4x4 matrix, while i is a 4xl vector.

4-3-c

The corresponding EKF equations are

Pt N  Xdit - (A i t + SUo0) dt + -. I- (dy-arctan x dt)

d (447)

P t N*NP.
dPt (A Pt + P t A*+ GG* dt

H2/ 1
2 + 22

where N (;1j; 22
a 0

0

and (A, 8, G, a) are as defined in (4-26).

___
....... ___________i __l__II ________-___
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4-3-d Simulation Results

The passive sonar problem described by equation (4-26), (4-28)

and the estimated algorithm by both TNF, EKF which have been

described by (4-46), (4-47) respectively, are simulated on the

digital computer.

To compare the estimator's performance, the following scenario

is devised. The target is at an initial range of 2700 yards, moves

at a constant speed of 675.13 yards/min., and mintains a steady

course of 00. In addition, the initial bearing is 00. Own-ship is

assumed to be at the origin initially, maintains a constant speed of

954.63 yards/min., but periodically executed 90o course changes as

follows:

from 450 to -45 0 at t a (4 + 17k) (k - 0,1] ,

from -450 to 45o at t a (12.5 + 17k) Ck - 0,1].

The own-ship course changes at the rate of 30/second.

Numerous simulation tests were conducted for this problem using

different levels of measurement noises and initial conditions. But

only representative sampling of the result- have been presented

here. These results are tabulated in Table 3 and are shown in

Figures (4-18) - (4-25) for additive, rms, measurement-noise levels

of 30, 120, respectively, and JJ1, JJ2 are as defined in (4-22).

The initial state values were respectively
I
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x(O) C [0, 2700, - 675.13, 0]

while the estimates were initialized according to the following

equation

1(0) - x1(O) [1 + .01 nl], i - 1,2,3,4,

where ni is a random noise. The initial covariance matrix was

p(O) - diag [106, 106, 152, 152] *

Moreover, in all the simulation cases, system noises are added to the

velocity states (x3 , x4 ) to compensate for random target-acceleration

fluctuations from the assumed constant-velocity trajectory (Uxt - uyt

0).

For convenience, the time interval for each run is 20 minutes,

and the number of runs for each simulation test case is 10 runs.

Thus, all results have been ensemble averaged over 10 runs.

The relative range trajectory and its corresponding estimates by

both the TNF, EKF were simultaneously plotted in Figures (4-18) - (4-

19) for the rms-noise levels of 30, 120 respectively. And the

relative-velocity trajectory and its estimates were shown in Figures

(4-20), (4-21) respectively. Figures (4-22)-(4-23) showed the range

ms-*stimation errors (Q(t), Q2(t)) associated with TNF, EKF
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respectively and calculated in accordance to equation (4-23) for the

same noise levels as above. In addition, figures (4-24), (4-25)

showed the velocity rms estimation errors (VQ1(t), VQ2(t)) calculated

by equation (4-24) for TNF, EKF respectively.

Several comments can be drawn from Table 3 and Figures (4-18)

through (4-25). First, Figures (4-18) - (4-21) showed that state

estimates begin converging to their true values after own-ship

executes a maneuver relative to target motion.

Figures (4-19), (4-21), (4-23), (4-25) showed the effect of

increasing the measurements error to an rms value of 120. The EKF

performance is improved while the TIF performance is degraded a

little, but still the TNF performs significantly better than the

EKF. The above conclusions are also demonstrated by Table 3.

Finally, it is generally noted that the covariance becomes

smaller with decreasing range and grows as range increases. This was

typical in all of the simulation cases, and pointed out the

involvements of nonstationary processes. It is also, noteworthy to

point out that when own-ship does not maneuver at all, both filters

diverge (generating biased range estimates), but the EKF diverges

faster than the TNF.

In closing, the following remarks are perhaps in order:

(i) In general, the TNF rs errors are much smaller than their

corresponding EKF ms errors. This demonstrates that the TNF

is more effective than the EKF.

) .. . . . . . . . . .. . .. .. .



83

(ii) Own-ship maneuvers relative to a constant-velocity target

enhance convergence. Thus own-ship maneuver or target maneuver

is essential to bearings only measurement analysis.

(iii) Computer utilization cost and storage requirements are almost

equal for both algorithms. Thus computation efficiency is not

a decisive factor in this application.

(iv) Finally, these results admittedly are not exhaustive. Thus,

more simulation tests are needed especially for the case when

the target is maneuvering. Also, comparison (via digital

simulation) of the TNF with the MP (Modified Polar Coordinates)

filter developed by Adiala [A3] warrant further consideration.

I

_ _ _ _ _ _ _ _ _ _
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TABLE 1

Synopsis of the Percentage Accuracy of TNF over EKF

C1  a JJ1% JJ2%

1.0 1 10.91 35.57

1.0 1.5 32.37 57.14

1.0 2 78.60 90.03

1.0 3 91.42 98.85

2%, 02m 10%, xl(O) * 5x103m, x2 (0) • 103 m/sec)

TABLE .2

The Effect of Measurement Errors on thePercentage
Accuracy of the TNF over the EKF

a 3 3 3

al 2% 10% 20%

02 10% 10% 10%

JJ1% 91.42 11.0 -7.23

JJ2% 98.03 17.47 -16.13

(cl-1 .0, x2 (0)-103 M/sec, x1(O)=5xlO3m)

I
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TABLE 3

Snopsis of the Percentage Accuracy of TUF Over
EKFas a Function of the Measurement rms Error

a degree 20 30 60 120

JJ1 % 32.35 38.48 36.84 13.69

JJ2  98.21 97.92 98.71 98.88

I -
.4

=
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S. SUMMY AND CONCLUSION

In this research an original nonlinear filter approximation is

developed for a class of nonlinear systems. The need for such a

filter which does not suffer from the shortcomings of most of the

linearization techniques, such as model smoothness, is encountered

frequently in many industrial, sonar, economic, and image-processing

applications. Obviously, the design of a filter which has improved

performance, without stringent requirements, and which is employed

with comparable implementation cost to the traditional techniques,

would be a very significant achievement. This has been the major

design goal of the work presented herein.

5-1 Signiftcant Features of the New Filter

The effort was devoted to the development of a new finite-

dimensional filtering approximation to the typical infinite-

dimensional-nonlinear filtering problem. As a result of this effort,

new features were developed, and a modest contribution to nonlinear-

filtering approximation theory was achieved. Among these are the

following:

1) Weaker assumptions are required to derive the filter even as the

solution is assumed to be a weak solution.

2) Impeding generation of a "close", (in m.s.e), bilinear, feedback-

control-mode approximation to the original nonlinear system.
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This has an impact on nonlinear approximation theory, since it

provides formal approximation procedures with flexibility

embedded. That is due to the fact that the appproxiating

parameters are functional s of the feedback control ut which

provides some control and insight into the structure of the

approximating model.

3) The feedback coupling in the filter-covariance equations enhances

the stability of the filter. In all of the linearization

techniques only forward coupling occurs in the filter equations

and that in essence helps to destablize the filter due to error

accunmul ation.

4) An important feature of the new filter is the "global" property

which allows the filter to be independent of the local-time

discretization, and thus decreases the noise aggravation.

5) A new "decomposition scheme" is developed for a certain class of

large-scale nonlinear systems. This results in great

mathematical simplification in the development of global

nonlinear multi-dimensional filter.

6) This filter provides an alternative formal approach to certain

traditional techniques, (such as MSOF [J13, and "the Smoothness

in Probability Filter EK4J), for certain nonlinear systems even

though the approaching method is quite different.
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5-2 Future Area of Research

The following five main areas warrant further study:

1) The development of an equivalent filtering algorithm for the case

when the observation process is discrete. This is specifically

important in sonar applications since observations may be

received as batches t random times. The following cases are of

most interest:

a) the observation is discrete but random;

b) both the observation and the system processes are discrete

and random.

2) Investigation of a general "Decomposition Scheme" to extend the

applicability of the new fIlter to a broad class of nonlinear

systems. The use of a hierarchical optimality scheme is

promising.

3) Computer utilization is an issue that should be more fully

explored. Thus, development of a standard software package for

the TNF algorithm would make the filter quite attractive to

practical applications. Furthermore, incorporation of the

microprocessor would increase the economical feasibility of the

filter.

4) The need for further testing and comparison with other existing

techniques to establish filter superiority in most cases, and to

enhance its reliability.

-- - ~
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S) Investigation of the use of "adaptive" techniques to surmount the

difficulty of tracking successfully an evasive maneuvering

target, which is a typical and important subject in sonar

applications. The following techniques are promising:

a) use of an additive control that can be estimated separately

using the separation principle for stochastic conditionally

Gaussian systems [K13;

b) use a feedback scheme to correct for the target deviation

from its constant trajectory due to maneuvering.

5-3 Conclusion

This dissertation has examined and expanded the subject of

nonlinear-filtering approximation. A new global-filtering approxi-

mation procedure has been developed with a particular emphasis on non

Gaussian processes. An important practical feature of the proposed

method is the method's independence of the model smoothness

assumption which is crucial to traditional techniques. Furthermore,

a major and equally important byproduct is the generation of a

"closed" (in the mean-square-error sense) bilinear model

approximation of the original nonlinear system.

The estimation method developed herein has been applied

specifically to practical problems to demonstrate its effectiveness

and applicability to a variety of a certain class of nonlinear

systems. In fact, the degree of ease or difficulty in extending its

I

~--%
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applicability to general multi-dimensional nonlinear systems is

directly related to the ease or difficulty in calculating the

multiplicative feedback control-laws, and accordingly in evaluating

the required conditional expectation of the nonlinear terms. This is

often proven to be difficult, especially for large-scale nonlinear

systems. However, for low-order nonlinear systems, this difficulty

has been surmounted by a novel decomposition scheme. This scheme

alleviates the control problem calculation, and permits a reduction

of the multi-dimensional integrations associated with evaluation of

the conditional expectation expressions to only a single integration

which can then be evaluated analytically. It is noteworthy to point

out that a similar approach which is developed in [K3J and has been

used in the second example, does not require any control-law

calculation but has no global filtering properties either. However,

the method requires evaluation of the conditional expectations with

corresponding multi-dimensional integrations.

A fundamental limitation imposed on the new approach was the

conditionally-Gaussian assumption of x0 given yo. This restriction

is very basic, because the filtering techniques herein are completely

dependent on the choice of the statistical model for the underlying

randam processes. However, as pointed out earlier, this assumption

sometimes may be satisfied under realistic operating conditions,

and, of course, it is more general than the traditional Gaussian

assumption of both xt and yt.

. m m I I
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The digital-computer simulation clearly demonstrates the

efficiency and filtering accuracy improvement of the THF over the

popular EKF. Thus, the apparent complexity of the algorithm and the

slight increase in computation cost might be justified by the

significant improvement in the filter performance. But, no claim has

been made that this filter is superior to all other existing

techniques in all cases. That certainly warrants further

investigation.

Finally, the methodological formulation developed in this work

is intended to generate further interest and insight into the design

of a future filter for general nonlinear systems. Moreover, it is

hoped also, that this filter's potential, as an effective filtering

algorithm for a nonlinear system, should be fully explored by

practical application to communication and tracking.
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WPEII)IX A

WIENER-PROCESS FORMULATION AND WHITE4NOISE FORMULATION EQUIVALENCE

Theorem Al Levy (LI, Thm 4.1, pp.82) defines a Wiener process as

follows:

Let (2,F,p) be a probability space and (Ft), tzEO,TJ be a

nondecreasing family of sub-o-algebras of F. The random process

(wt,Ft), tc(O,TJ, is called a Wiener process if

(i) the trajectories wt. tcO,T] are Gaussian, continuous (p.a.s.)

on (0,T],

(ii) wt. tgcOTJ is a square- Integrabl e martingale [A4J with woO

p.a.s. and E[(w t-w s)(Wt -w S) *J-(sAt)1, t~s

Thus, any Wiener process is a Brownian motion process (L1],[A4].

Definition Alt A4J

A sequence of quadratic mean square continuous [xt n]. tt-.._j

is said to converge to a white noise if for each function f(t), g(t),

Cf If (t)Idtcm), there exists a positive constant So, i.e.

limit E (f T f(t) g(s) xtn x n dt ds) - So f' f(t) g(t) dt.

As pointed out earlier, a stochastic differential equation with

an additive, exciting, white-Gaussian noise is given by

W. ftot) + G(xt~t) 5t (A-1)
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Here, st is a white noise, and is thus neither mean square Riemann

integrable nor integrable with probability one. Hence equation (A-I)

Is not mithuMtically meaningful as it stands. However, if the white

noise is as defined in (Al) and is considered as the formal

derivative of the Wiener process (wt, teT), (Th..Al), then (A-i) may

be considered formally equivalent to

dxt - f(xtt)dt + G(xt,t)dwt, tzT. (A-2)

At least formally it is known that I tds has all the properties of
0

Brownian motion, wt. Hence, (A-i) can be made meaningful in terms of

a stochastic integral equation D2].

T T
xt xo + f f(xs,s)ds + f G(xs,S)dws  (A-3)

0 0

The last integral in (A-3) is interpreted as a stochastic integral

which needs to be defined. Since, as it may be recalled, wt has a

realization of unbounded variation in any small interval of time, the

last-integral cannot be defined in the usual Lebesque-Stieltjes

sense. One generally accepted definition is due to Ito ELI] and is

often referred to as an Ito stochastic integral, and (A-2) is called

the Ito stochastic differential equation interpreted In terms of the

Ito calculus [A43 which is not compatible with results of ordinary
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calculus. Accordingly, the following definition is appropriate.

Definition A2 [LI], [K1].

A process xt is said to satisfy (A-2) fGr te[O,T], with initial

state xO if

() for all tc[O,T], tG(xs,s)dws can be interpreted as a
0

stochastic integral,

(ii) for all ta[O,T], xt is almost surely equal to the random

variable

x° fo (xs's)ds + f tG(xs's)dms"

Under certain conditions imposed on xo,f,G IL1], (A-2) has a unique,

strong/weak, samle-continuous, Markov solution. The strong-solution

notion is defined as follows

Definition A3 [L1]

For a given complete probability space, (a,¢,p), and a Wiener

process wt, the stochastic differential equation (A-2) has a strong

solution Xt if:

t
1) P(f IIf(xt,t)IIdtc-) - 1 (A-4)

0

oMOM
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2) P( T IIG(xtpt)ll2 dt<-) - 1 (A-5)

0

3) Condition (ii) of Definition A2 is satisfied. (A-6)

That implies that ¢tx4 € ,

where rtx- c-algebra [xs ; Ocs~t],

w
Ct- o-algrebra [wS; 0434t].

The weak solution notion is defined as:

Definition A4 EL1].

Let F(u) - Pn), probability measure for n random variables.

If there exist (2,Cp), xt, p-a.s. continuous, conditions (A-4), (A-

5), (A-6) are satisfied, and F(a - P(xoao). Then xtis a weak

wsolution to (A-2) which implies ctx ct w , and Ctx, Ct as defined

previously.

It is noteworthy to point out that the use of Ito calculus,
t

which led to the definition of the Ito integ-al f G(xsS)dws in
0

equation (A-3), results in adding a correction term to the result of

the ordinary differentiation rules when stochastic process is

differentiated. This will help in transforming the dfferential dxt

as in quation (A-2), into a form that can hopefully be recognized as

V..--
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the differential of a known function. For example, consider the

following stochastic differential equation.

dx a xdw, (A-7)

with initial conditions x(O) - 1, w(O) - 0, and E(dw(t) 2 ) - dt.

Using ordinary integration rules or Stratonovich rule, the analytical

solution is

x(t) - Exp w(t) . (A-8)

However, using Ito integral, the solution is

x(t) - Exp [w(t) - 0.5t], (A-9)

which is actually" the integral of the following stochastic

differential equation

dx - x dw + 0.5 x (dw)2, (A-10)

where (dw)2 a dt.

The last tern in equation (A-10) is what is referred to as the

correction term. Thus, the addition of the correction tem to

equation (A-7) will make it compatible with ordinary rules of

differentiation and integration.

In simulating equation (A-3) or its differential equivalence

(equation (A-2)) special care mist be given to the simulation of the
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term JB(xs,s)dws because (dw) is highly uncorrelated. Thus, it is

difficult to find an appropriate integration step-size at. However,

the following approximation scheme is appropriate.

Let R be the maximum rate of change and defined as

R = Ta [IF(x,t)l + G (x,t) ] (A-11)'j + 1 + x7

Now let At<<* , E (dw) 2 . At.

Then, equation (A-2) or equation (A-3) can 'e integrated using

digital computer as follows

*+1- xk + At F(xk, tk) + aw G(xk, t k )

(A-12)
+ 0.5 At G(Xk ,tk)

+ 0.5 at G(xk, tk) ax

Hence, the last term in equation (A-12) is the correction term which

is essential for the simulation of the Ito differential or (integral)

equation by digital-computer.

Let us return for a moment to equation (A-3) and try to find

some physical interpretation to it. If x(t) is the state of a

dynamical system, then the terms on the right-hand side of equation

(A-3) can have a nice interpretation. The term x0 is just the

initial condition. The first integral describes the evolution of the

component of the state with time. The second integral can be

___ 4
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considered as the irregular component, which is entirely due to

noise. Furthermore, It is well known, (using practical engineering

assumptions) that any continuous noise can be regarded as a smooth

transformation of a standard Wiener process. Unfortunately, the

standard Wiener process is not differentiable with respect to time,

hence no such di exists. Thus, only the stochastic integral as in

equation (A-3) is available for modeling real systems. However, as

pointed out earlier, if the white Gaussian noise is considered as a

formal derivative of the Wiener process then the stochastic

differential equations (A-1), (A-2) would have a particular appeal to

engineering applications. Furthermore, the white-noise concept

allows us to manipulate the Wiener integral (which is a special case

of the Ito integral, if certain conditions about the function G(xs,S)

are satisfied i.e. G(xs,s) is square integrable) as an ordinary

integral but not in the same sense as the Stiell tes integral is

defined. It also allows a suitable mathematically tractable model

for many continuous physical noises encountered in real engineering

systems.

Now that equations (A-1), (A-2) and (A-3) have been presented

formally, let us discuss briefly the use of such equations in

modeling real physical processes if they are going to be of any

practical value. As it is known in many practical problems both in

control and commnications, differential equations arise from the

lawi of nature, but it is not advisable to take derivatives of

11
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certain signals. Thus, it is appropriate to model these signals by

so-called stochastic differential equations. In addition, almost any

mathematical model of a physical process involves a degree of

idealization that produces a good match with reality only within

certain ranges of the parameters involved. Thus, the result of such

a modeling can be judged only by comparison with practical

experiments within the prescribed ranges of the parameters

involved. For example, the erratic motion of a particle or point

mass submerged in a fluid caused by impact of the molecules of the

liquid on the particle. The force acting on the particle can be

approximated by

-cx(t) + 0 un(t). (A-13)

where x(t) denotes a position of the velocity of the particle at time

t. Here, the first term in (A-13) represents friction or drag, while

the second represents the push imparted upon the particle by some

projecting force which is random in nature. If the process un(t) is

replaced by white Gaussian noise nt. Then the motion of the particle

can be approximated by

it) + axlt) -O;n t , 00. (-4

Here m is the mass of the particle, and 1(t) is the acceleration.

Hence we arrived at the famous Langevin equation. Thus, the velocity

if_ _ _ _ __ _ _ _ _
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coordinate, (with certain assumptions about the initial conditions),

will be an Ornstein-Uhlenbeck process which can be obtained as the

solution of the stochastic equation

dx t  t + c& t , (A-15)

where wt is a Wiener process and a,c are positive constants.

The relevance of the model (A-14) or equivalently (A-15) can now

be tested, for example, by observing to motion of the particle and

deciding whether the statistic, (mean, variance), of the displace-

ments of the particle can be described as a white Gaussian noise.

The practical implementation of the concept of weak/strong

solutions depends in large on the particular application at hand, and

the system modeling approach. A strong solution usually deals with a

given" Wiener process as a model for a wide spectrum random noise,

while a weak solution is based on the promise that there exists a

Wiener process which can be used as such a model. Thus, if the

physical properties of a given problem specifies the probability

I space (2,;,p), the system's possible outcome event set(ct), UCO,T],

and the Wiener process w - (wt) then the strong solution approach is

appropriate. On the other hand, if the physical nature of the

problem does not specify the complete probability space (a,C,p),

then, the weak solution approach might be more suitable as a modeling

approach. Thus, we may construct a probability space (n,C,p), a

system (ct 1 , t([O,T), and a Wiener process w-(wt), for which (A-S)-

(A-6) are satisfied (p.a.s.), to satisfy the modeling purpose.

.... -i I I III1 II
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APPE1IX B

AUXILIARY RESULTS

Lemma B1 ED2)

Let Extn] and C't n]  be two jointly normal processes and let

E(x/yt) a - PtYt, the projection of x onto H . Then, the

conditional characteristic function, (for the vector case),

n nSxly (Q) - Exp[jrvi t - 0.5 E E: w i"Juij], (B-1)

where -* (w1 Vw2 ...Wn),

t  ( 1 , X2 ,-..x M) , the conditional expectation,

ii " uji " E((xi- 9 Oxj'9 l */Ys; t),

the conditonal covariance.

The proof is an extension of the proof given in [02, pp. 53) for the

scalar case, and is omitted for brevity.

Leml 82, [P2, pp. 1463

Let [xt], ial,2,...n be Jointly normal processes with the

conditional characteristic function vx/(M as given in Lev= B2.
3
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Then, the conditonal expectation of order r -k + k2  ...kn, is

JrE[(x,.x/Ys; sut) r 7 3Yx wl w2 ...Wn) (B-2)

1 nW K= 1 *5 2 l Knaw 1 ~w 2 2.".n ;n" 0

The proof is parallel to the proof given in [P2] using the above two

lemmas; the following results are noted;

E(x x2x3 /ys; St) 1 R1u23+ Yu 13+ 3u12+ Y2 23 (B-13)

E(XlxeX3x4 /ys; s4t) - ule 34+ u13u 24+ u 14u2 3+ Y1i 2u34

+ 1 1 '3 U24 + Y1R4u23+ ' 2 "3 ul 4 +

YOU4 u1 3  5 3X4U14 + i 1 2 i 3 i4 . (8-14)

m --.
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E(xlx2x3x4xS/ys; s't) 'x1 2131415+ R1Eu23u45+ U24u35* U20u34)

+ 2Eu 13 445 U14439+ UlSU34J + i 3 1 5uH24 U21

+ u12u45J + 14 Cu1 2" 3 5+ u13 u2S+ UlSU233

+ 'S(ul2 u3+ ul 3 u244iul 4 u231

+ i X2X3U45 x51Y~ 4 43 5+ Y903~u4

+ R2R3R4 ul 5+ YA 3XU 14 + YA 4XU 12

+ 1X4 15U23 + XlY3 SU24+ ' 2Y4XU 13

Here NO EI(xil)(xj-i )*/Ys; st)) the condition covariance.
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